
Assumptions:
- Whenever an order is placed, it gets a

new record in state history indicating
when the order was placed

ski type

id {PK}
model
type
temperature
grip system
size
weight class
description
historical
url
MSRP

franchise

shipping address
negotiated buying price
partner stores[0..*]
 store name

individual store

shipping address
negotiated buying price

shipment

shipment number {PK}
store name
transport_company
shipping address
scheduled pickup date
state
driver id
shipment orders[1..*]
 order number

ski order

order number {PK}
ski types[1..*]
 quantity
total price
state history[1..*]
 state
 employee_id
 date
reference to larger order

customer

ID {PK}
name
start_date
end_date?

employee

ID {PK}
department
role
name

team skier

dob
club
number of skies pr year

contains...

0..*

1..*

makes an...

1..1

0..*

1..1

1..*

contains...

production plan

ID{PK}
skis[0..*]
 daily amount
start_date

contains...

0..*

0..*

{mandatory, or}

produced skis

prod num {PK}
prod date

is of...

0..*

1..1

updates...0..*

1..*

Endpoint definitions

Company endpoints

Customer rep endpoint

Endpoints Methods Description

Orders GET Retrieving orders based on
state.

Media type: application/json

Order PATCH Change the state of an
order.

Media type: application/json

Shipment create POST Creates a shipment request.

Media type: application/json

Endpoints URI Description

Orders http://localhost/rest/com/cus/
orders

Optional parameter:
?state={state}

Retrieve all orders based on
state.

Order http://localhost/rest/com/cus/
orders/{id}

Change the state of an
order.

Shipment create http://localhost/rest/com/cus/
req_ship

Request a shipment.

Resource Representation

Orders [order*]

Order {

"id": INTEGER,

"state": STRING

}

Shipment create {

"orders": [order_id*] INTEGER ARRAY

}

Storekeeper endpoint

Endpoints Methods Description

Produced ski POST Register a produced ski.

Media type: application/json

Get orders GET Retrieve orders.

Media type: application/json

Update order PATCH Update the state of an order.

Media type: application/json

Endpoints URI Description

Produced ski http://localhost/rest/com/stor
/register

Use this to register a newly
produced ski.

Get orders http://localhost/rest/com/stor
/orders

Optional parameter:
?state={state}

Use this to get a list of
orders.

Update order http://localhost/rest/com/stor
/orders

Use this to update the state
of an order.

Resource Representation

Produced ski {

"ski_type": INTEGER,

"prod_date": STRING

}

Get orders [order*]

Update order {

"id": INTEGER,

"state": STRING

}

Production planner endpoint

Endpoints Methods Description

Production plan POST Upload production plan.

Media type: application/json

Endpoints URI Description

Production plan http://localhost/rest/com/pro
d/planner

Use this to upload a
production plan.

Resource Representation

Production
plan

{

"start_date": STRING,

"planned_skis": [

"ski_type_id": INTEGER,

"daily_amount": INTEGER

]*

}

Customer endpoint
Endpoints Methods Description

Orders GET This resource contains a list
of orders they have made.

Media type: application/json

Order GET, DELETE This resource contains
information about a specific
order.

Media type: application/json

Order create POST This resource is for creating
orders.

Media type: application/json

Split GET Request split of order.

Media type: application/json

Plan GET Contains current four-week
production plan.

Media type: application/json

Endpoints URI Description

Orders http://localhost/rest/cus/orde
rs
Optional query:
?since={date}

Use this to get information
about orders.

Order http://localhost/rest/cus/orde
rs/{id}

Use this to get information
about a specific order or
update the order.

Split http://localhost/rest/cus/orde
rs/split/{id}

Use this to request a split of
an order. New order ID will
be included.

Order create http://localhost/rest/cus/orde
rs/create

Use this to create a new
order.

Plan http://localhost/rest/cus/plan Use this to get the current
four-week plan.

Resource Representation

Orders [order*]

Order {

"order_number": INTEGER,

"total_price": INTEGER,

"state": STRING,

"reference_to_larger_order": INTEGER,

"customer_id": INTEGER,

"skis": [

{

"ski_type_id": INTEGER,

"quantity": INTEGER

}

]*

}

Order create {

"total_price": INTEGER,

"state": STRING,

"reference_to_larger_order": INTEGER,

"customer_id": INTEGER,

"skis": [

"ski_type_id": INTEGER,

"quantity": INTEGER

]*

}

Split {

"new_id": INTEGER,

"old_id": INTEGER

}

Plan {

"start_date": STRING,

"skis": [

"ski_type_id": INTEGER,

"quantity": INTEGER

]*

}

Transporter endpoint
Endpoints Methods Description

Orders GET Retrieves information about
orders ready for shipment.

Change state when picked
up.

Media type: application/json

Shipments GET Retrieves a list of all
shipments

Media type: application/json

Update shipment PATCH Change the state of a
shipment.

Media type: application/json

Endpoints URI Description

Ready orders http://localhost/rest/trans/ord
ers

Use this to get a list of
orders ready for shipment.

Shipments http://localhost/rest/trans/shi
pments

Use this to get a list of all
shipments

Update shipment http://localhost/rest/trans/up
date/{ID}

Use this to change the state
of a shipment.

Resource Representation

Ready
orders

[order*]

Shipments {

"shipment_num": INTEGER,

"store_name": STRING,

"shipping_address": STRING,

"sched_pickup_date": STRING,

"driver_id": INTEGER,

"transport_company": STRING,

"state": STRING,

"orders": [order_id*]: INTEGER ARRAY

}

Update
shipment

{

"state": STRING

}

Public endpoint
Endpoints Methods Description

Skis GET This resource contains a list
of the various types of skis.

Media type: application/json

Ski GET This resource contains
information about a specific
type of ski.

Media type: application/json

Endpoints URI Description

Skis http://localhost/rest/pub/skis
Optional query:
?model={name}

Use this to get a list of skis.

Ski http://localhost/rest/pub/skis/
{id}

Use this to get information
about a specific ski type.

Resource Representation

Skis [ski*]

Ski {

"id": INTEGER,

"model": STRING,

"temperature": STRING,

"grip_system": STRING,

"size": INTEGER,

"weight_class": STRING,

"description": STRING,

"historical": BOOLEAN,

"url": STRING,

"msrp": INTEGER

}

Jakob Frantzvåg Karlsmoen
Mikkel Aas
Ruben Christoffer Hegland-Antonsen

Project
IDATG2004

2021-05-20

1 Logical model

ski type(id, model, type, temperature, grip system, size, weight class, description, historical, url, msrp)
Primary Key id

produced skis(prod num, prod date, ski type, order id)
Primary Key prod num
Foreign Key ski type References ski type(id)
Foreign Key order id References ski order(order number)

production plan(id, start date)
Primary Key id

production plan ski(id, production plan id, ski type id, daily amount)
Primary Key id, production plan id, ski type id
Foreign Key production plan id References production plan(id)
Foreign Key ski type id References ski type(id)

employee(id, department, name, role)
Primary Key id

ski order(order number, total price, state, reference to larger order, customer id)
Primary Key order number
Foreign Key reference to larger order References ski order(order number)
Foreign Key customer id References customer(id)

ski order ski type(id, order id, ski type id, quantity)
Primary Key id, order id, ski type id
Foreign Key order id References ski order(order number)
Foreign Key ski type id References ski type(id)

ski order state history(id, ski order id, employee id, state, date)
Primary Key id, ski order id, employee id
Foreign Key ski order id References ski order(order number)
Foreign Key employee id References employee(id)

shipment(shipment num, store name, shipping address, sched pickup date, state, driver id, transport company)
Primary Key shipment num

shipment orders(id, shipment num, order num)
Primary Key id, shipment num, order num
Foreign Key shipment num References shipment(shipment num)
Foreign Key order num References ski order(order num)

customer(id, name, start date, end date)
Primary Key id

individual store(id, shipping address, negotiated buying price)
Primary Key id
Foreign Key id References customer(id)

1

team skier(id, dob, club, number of skis pr year)
Primary Key id
Foreign Key id References customer(id)

franchise(id, shipping address, negotiated buying price)
Primary Key id
Foreign Key id References customer(id)

partner stores(id, franchise id, name)
Primary Key id
Foreign Key franchise id References franchise(id)

2

id int(10)

dob date

club varchar(50)

numer_of_skis_pr_year int(10)

team_skier

id int(10)

model varchar(50)

type varchar(50)

temperature varchar(50)

grip_system varchar(50)

size int(10)

weight_class varchar(50)

description varchar(50)

historical tinyint(1)

url varchar(50)

msrp int(10)

ski_type

id int(10)

ski_order_id int(10)

employee_id int(10)

date date

state varchar(19)

ski_order_state_history

id int(10)

order_id int(10)

ski_type_id int(10)

quantity int(10)

ski_order_ski_type

order_number int(10)

total_price int(10)

reference_to_larger_order int(10)

customer_id int(10)

ski_order

id int(10)

shipment_num int(10)

order_num int(10)

shipment_orders

shipment_num int(10)

store_name varchar(50)

shipping_address varchar(50)

sched_pickup_date date

driver_id int(10)

transport_company varchar(50)

state varchar(9)

shipment

id int(10)

production_plan_id int(10)

ski_type_id int(10)

daily_amount int(10)

production_plan_ski

id int(10)

start_date date

production_plan

prod_num int(10)

prod_date date

ski_type int(10)

order_id int(10)

produced_skis

id int(10)

franchise_id int(10)

name varchar(50)

partner_stores

id int(10)

shipping_address varchar(50)

negotiated_buying_price int(10)

individual_store

id int(10)

shipping_address varchar(50)

negotiated_buying_price int(10)

franchise

id int(10)

department varchar(50)

name varchar(50)

role varchar(23)

employee

id int(10)

name varchar(50)

start_date date

end_date date

customer

token varchar(50)

company_access tinyint(1)

customer_access tinyint(1)

transporter_access tinyint(1)

access_token

ski_type_ski_constraint

ski_order_ski_order_state_history_constriant

shipment_orders_ski_order_constraint

customer_individual_store_constraint

customer_team_skier_constraint

production_plan_production_plan_ski_constraint

ski_order_state_history_employee_constraint

franchise_franchise_id_constraint

ski_order_customer_constraint

produced_skis_order_id_ski_order_order_number

customer_franchise_constraint

shipment_orders_shipment_constraint

ski_type_order_ski_type_constraint

production_plan_ski_type_constraint

ski_order_order_constraint

order_order_ski_type_constraint

Visual Paradigm Professional(Jakob(Norwegian University of Science and Technology))

Department of Computer Science

IDATG2204

Database Project

Authors:
Mikkel F. Aas, Jakob F. Karlsmoen, Ruben C. Hegland-Antonsen

March, 2021

1 Test planning

1.1 Definition of test cases

1.1.1 API tests

We want to test every endpoint defined in the endpoint definition document. This includes all the
different HTTP methods (GET, PATCH, POST... etc) for each of the endpoints. We will also test
that you receive a sensible error response upon errors (for example if an invalid HTTP method is
used).

1.1.2 Unit tests

We want to use unit tests during the development to make sure the code we are writing is working
as intended. We also want to use unit tests to ensure code quality, for instance in the case of
refactoring.

1.2 How

We are planning on using Codeception as a testing framework. It is able to do both unit testing
and API testing.

1.2.1 When

Unit tests will be implemented during the development. When merging code with the development
branch on GitLab, the tests should be in place.

API tests will be implemented at the end of the development period.

1.2.2 Who

For unit tests, the developer writing the code will be responsible for creating unit tests for that
code.

API testing will be divided into three parts and distributed between the developers:

• Company endpoints

• Customer endpoints

• Transporter and public endpoints

At the end we will jointly review the API tests together.

1

	Ski
	Page 1

	ef11d6bf-ff21-46f1-a749-388765164278.pdf
	Logical model

	b076df3d-b7bb-4e08-9c0c-8b8bec9dfdde.pdf
	Test planning
	Definition of test cases
	API tests
	Unit tests

	How
	When
	Who

